Reliable Speed Prediction: Propulsion Analysis and a Calculation Example

Donald M. MacPherson

VP Technical Director HydroComp, Inc.

ABSTRACT

Speed prediction is more than just bare-hull resistance. Speed is a function of drag <u>and</u> thrust. This paper will discuss propulsion relationships – and our ability to predict how power is converted into thrust for a given application. It will illustrate some of the more common shortcomings found in propulsion analysis, and it will provide a summary of features that must be part of reliable speed prediction software. Finally, it will offer a calculation example where resistance and propulsion analysis are combined to demonstrate various data requirements, decisions, and processes.

INTRODUCTION

The first step to a reliable speed prediction is a proper prediction of resistance – but this is only the first step. *Speed is a function of both drag and thrust.*

Do you want to run at a faster speed? You can reduce drag, or you can increase thrust. Speed, drag and thrust are tightly connected. Of course, the actual measure of drag and thrust *themselves* are meaningless, except that they are steps to the really important measure of performance for a designer – *speed and power*. We purchase power to make a desired speed.

This paper will discuss propulsion relationships – and our ability to predict how power is converted into thrust for a given application. It will illustrate some of the more common shortcomings found in propulsion analysis, and it will provide a summary of features that must be part of reliable speed prediction software. Finally, it will offer a calculation example where resistance and propulsion analysis are combined to demonstrate various data requirements, decisions, and processes.

THE PHYSICS BEHIND THE SYSTEM

The goal of a speed prediction is to model a boat's performance over a range of boat speeds. Principally, we are looking to define the *hull-propulsor-engine*

equilibrium (Figure 1), which will provide the structure for our propulsion analysis.

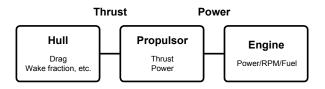


Figure 1. The hull-propulsor-engine equilibrium

Thrust-Drag equilibrium

Between the hull and its propulsor (e.g., propeller, waterjet) is an equilibrium of forces. The delivered thrust of the propulsor must exactly match the drag at each analysis speed. Therefore, we need to identify the characteristics that will provide just the right amount of thrust.

For a propeller, this means finding the right RPM. Let's use your knowledge of boat operation to help you understand this. We all know that there is one unique throttle position for each speed. Propeller RPM is controlled by the throttle position, and the connection between drag and thrust is through a unique RPM.

Finding the right RPM is all about properly modeling propeller performance on the boat. First, it is necessary to know how the propeller performs in

Copyright © 2004 HydroComp, Inc. All rights reserved. Presented at IBEX 2004.

service. We need a reliable model for a propeller's thrust and torque. In other words, we must accurately predict thrust and torque for each speed and RPM.

Second, it is necessary to understand that the force equilibrium described above is a match of drag and *delivered thrust*, not theoretical propeller thrust. Delivered thrust takes into account the effect of the boat on the propeller. This effect is described by two hull-propulsor interaction coefficients known as *wake fraction* and *thrust deduction*. (There is a third coefficient – *relative-rotative efficiency* – but its effect is quite small, so we will ignore it for this discussion.)

Wake fraction helps define the actual speed of the water reaching the propeller as it passes by the hull and underwater gear. *Thrust deduction* is a measure of the reduction of usable thrust due to the close proximity of the hull's afterbody immediately ahead of the propeller. Both affect a propeller's ability to generate useable delivered thrust.

Engine-propeller power equilibrium

So how do we get from propeller thrust to engine power? Engine power is simply a function of *propeller efficiency* and *propulsion system mechanical efficiency*.

Propeller efficiency is derived from the propeller performance calculations. In simple terms, it is the ratio of thrust-to-power. So, propeller thrust correlates to propeller power via its efficiency.

It is important to remember that the required *propeller power* for a particular speed is not the *brake power* generated by the engine. Brake power is somewhat greater, as we have to consider the propulsion system mechanical efficiency by adding shaft and bearing losses (1%-2%) and reduction gear losses (3%-4%).

Analysis procedure

A propulsion analysis will give us speed vs power. Before we can begin, however, we will need to know the following:

- 1. Range of boat speeds to consider.
- 2. The total in-service drag at these speeds.
- 3. An appropriate prediction model for wake fraction and thrust deduction.
- 4. A complete and reliable model of propeller performance.
- 5. An estimate of the mechanical system losses.

If we have this, then we can run a propulsion analysis by looking at each speed in isolation. The following are the steps to find each unique performance parameter:

- 1. Drag for a given speed.
- 2. *Wake fraction* and *thrust deduction* for a given speed.
- 3. *Delivered thrust* to match the drag.
- 4. *Theoretical propeller thrust* for a delivered thrust.
- 5. *Propeller RPM* to provide the right theoretical thrust.
- 6. Propeller efficiency at the propeller RPM.
- 7. Propeller power via the propeller efficiency.
- 8. Engine power given the mechanical losses.

WHEN TRADITIONAL MEANS FICTIONAL

Open any book on boat design and you'll see numerous ways to predict speed and power. Many of these were based on observations of boat performance from many years ago, and they no longer apply. They are either based on obsolete technology or are just too simplistic to be useful anymore.

Simplistic prediction of OPC

The ratio of all of the accumulated efficiencies in relating drag to engine power is called *OPC*, the *overall propulsive coefficient*. Many references suggest using a single value of OPC for all propulsion systems.

The problem with this approach is that the estimated OPC may, or may not, bear any resemblance to the actual performance of your boat. A single representative OPC (such as the ever-popular 0.55) cannot possibly account for the many differences in propeller operation that effect performance.

For example, contemporary OPC figures are often more than 0.65. Even if your drag prediction is spot on, this means that the power prediction is some 15% in error! On the other hand, we periodically see poor waterjet selections, which result in OPC of much less than 0.55 and insufficient engine power.

Increasing engine powers, higher cavitation levels, more cambered and cupped propellers, deeper gear ratios and higher pitches all contribute to changing trends in propulsor performance and OPC. It is therefore necessary to avoid using a simplistic estimate of OPC.

Obsolete propeller prediction models

Consider commercial fixed-pitch propellers, such as the popular DynaJet or DynaQuad propellers from Michigan Wheel, as well the commercial models of many other manufacturers. Most are derived from the Gawn series model (ogival, flat-faced). Unfortunately, many propeller prediction tools still improperly use B- series propellers (Troost) as the model for all propeller performance.

These tools also do not account for the effect of cup and cavitation, which is something we absolutely must consider these days. As engine power densities have risen over the years, more and more installations are showing very high levels of cavitation.

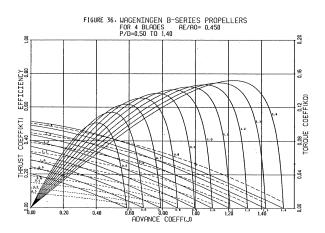
Modeling the effect of cavitation on performance is one correction to make. The next correction is to determine the effect of cup [MacPherson 1997]. After blade area, cup is probably the most frequently used means to control cavitation breakdown on work boats and pleasure craft. Corrections for both cavitation breakdown and cup modification are available to obtain a reliable model of actual propeller performance.

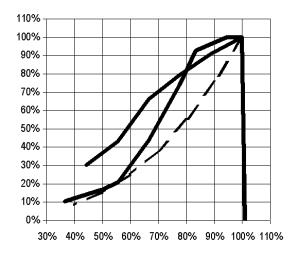
HOW PROPELLER SIZING DECISIONS AFFECT PERFORMANCE

We must not assume that we will necessarily have an optimum propeller delivering optimum efficiency across all speeds. There are many ways in which valid propeller sizing decisions mean we have a less than optimum propeller. Remember, we are looking to predict what <u>will</u> be, not what <u>might</u> be.

Potential propeller efficiency

Potential propeller efficiency is directly related to a propeller's pitch. Within the context of a good propeller sizing, potential efficiency can be increased with a higher pitch. Consider the following plot of propeller curves (Figure 2). For a moderate change in P/D ratio from 0.8 to 1.0, the peak *potential* propeller efficiency increases by some 6%.




Figure 2. Propeller curves

Solving dynamic problems may affect all speeds

One example of where we might select a pitch less than optimum for top speed performance is when we have mid-range dynamic problems. For example, some boats have difficulty getting "over the hump" or "on plane". This is due to the relationship between the steady-state speed-power curve and the engine's power curve. When we encounter such a situation, our only course of action may be to use a different pitch to allow the boat to get on plane [MacPherson 2001].

The following plot (Figure 3) illustrates how the engine itself contributes to the ultimate selection of pitch – and, ultimately, the propeller efficiency at all speeds. The dashed line is the propeller's power-RPM curve; the other two lines are representative of an older naturally aspirated engine (with more power at low RPM) and a newer highly-turbocharged engine (with a narrower power-RPM curve).

Getting over the hump is all about surplus power – of which the new engine has very little at mid-range. To fix this problem, you might see a compromise where the pitch is reduced, resulting in lower mid-range propeller power. You will also see a loss of top speed (due to the governor's maximum RPM limit), as well as a <u>loss of efficiency at all speeds</u> due to the lower pitch.

Figure 3. Engine-propeller power-RPM curves

PROPULSION ANALYSIS FOR WATERJETS

Techniques are available to predict thrust, power and efficiency for waterjets [MacPherson 1999, MacPherson 2000, MacPherson 2002]. However, it is probably more important for waterjets than for propellers that a proper "sizing" be conducted, as the implications of sizing an inappropriate waterjet are farreaching. Unlike propeller curves (as illustrated in Figure 2), waterjet efficiency is hidden in published performance data – you are only presented with thrust and power. This is enough, however, to select a waterjet model, and many designers do not even consider efficiency.

Waterjet peak efficiencies are commonly 0.60 or more – very comparable to propellers. Also like propellers, waterjets are designed to reach their peak efficiency over relatively narrow range of boat speeds, but this range of peak efficiency is rarely published. For example, in one project we were asked to evaluate, the selected waterjet was reaching its peak efficiencies above 35 knots, even though the boat speed was only 24 knots [MacPherson 2002]. At these lower operating speeds, the efficiency was less than 0.45. Without a proper waterjet propulsion analysis, we could have significantly missed our speed-power prediction.

PROPULSION ANALYSIS REQUIREMENTS

The following is a list of features and calculation techniques that must be part of any thorough and proper propulsion analysis. Use this list to help insure that your speed predictions are as reliable as possible.

Prediction of wake fraction and thrust deduction

Use suitable prediction methods for these coefficients that are appropriate to the characteristics of your boat. You do not want to use one formula for all boats. You need to match your boat to the collection of available methods.

Prediction of basic propeller performance

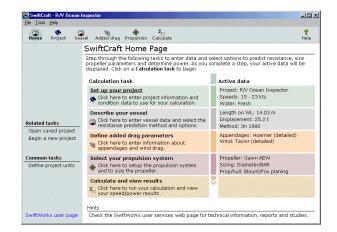
The propeller charts or software that you use must be of the correct propeller type. Many publications and software still rely exclusively on B-series propeller performance, which is not correct for the Gawn-style models that make up most of the small commercial propellers in service.

Prediction of propeller cavitation and cup

As installed engine power continues to climb, we see more instances where boats are operating with very high levels of cavitation. We also see increased reliance on cupping as a means to control thrust breakdown. Your analysis must include the ability to model these characteristics.

A thrust-drag solution for RPM at each speed

Efficiency will change at each speed, as the RPM changes to suit the required propeller thrust. One efficiency value cannot represent all speeds – each speed must be evaluated independently.


Prediction of waterjet efficiency

If you are considering a waterjet-driven boat, you will need to be able to predict waterjet efficiency.

SPEED PREDICTION EXAMPLE

The following example will demonstrate how a propulsion analysis is conducted using contemporary software. It will also show data entry, drag prediction, and reporting.

HydroComp's *SwiftCraft*^{imes} software is used for this illustration.

SwiftCraft Home Page

Set up your project

Each project will have its own unique name and description. In the *Project* page, you will enter this information, as well as data about the range of speeds, water type, and a measurement reference.

SwiftCraft - R/V Ocean I File Icols Help	nspector		
Home Project Ves	sel Added drag Propulsio	Σ <u>r</u> j n Calculate	? Help
	Set up your proj	ject	
	Describe your project, inc and water type. If desire return to the main page.	luding administrative data, range of s d, Define project units first. Click Hor	ne to Home
	Project		
	Name/number R/V O	cean Inspector	
	Description Prelim	inary design. Final layout not confirme	ed.
	Speed [kts]		
Related tasks Open saved project	1 15	4 18	7 21
Begin a new project	2 16	5 19	8 22
	3 17	6 20	9 23
Common tasks			
Define project units	Water condition		
	Water type Fresh		
	Longitudinal reference	point	
	Display LCB from	• Aft of FP C Ewd of AP	

Project page

General vessel parameters

A full and complete description of your hull is necessary for a reliable analysis. Four pages within this *Vessel* group are used to enter information about your hull. The information is parametric – meaning that the geometry is described by individual numerical values (such as length, beam or displacement) rather than by the three-dimensional geometry.

Home Project Ves	Added drag Propuls		ers for	vour vessel		💡 Helj
	Enter the principal geo Click Next to describe pages.	, metric charact	eristics of	, you vessel below.	Home	Next
essel pages	General data					
General parameters	Length between PP	14.03	m	Max molded draft	0.91	m
Displacement/semi Planing data	WL bow pt aft FP	0	m	Displacement bare	25.2	t
Prediction method	Length on WL	14.03	m	Wetted surface	49.42	≅ m2
	Max beam on WL	4.68	m	Chine type	Hard	•
	Parameters					
	B/T	5.14286		Cb	0.422169	-
ommon tasks	Lwl/B	2.99786		Cws	2.62699	-
Define project units	Hints Estimate buttons you do not know	actual values	d here) are . Click the I	used to provide estimate outton to pop up an Estin	es for data ite nate window.	ms wher

Vessel parameters page

Data accuracy is essential to a reliable prediction. In some cases, however, you may have to estimate values for certain data items. When needed, it is valuable to employ a collection of parametric estimates for a variety of different vessel types.

ick Done to se	et the valu	le.		_	Done	Cancel
Method	Hull	Details	Value	Parameters: Denny		
Denny Dortmerssen Mercier Holtrop 1984 Jin 1980 DeGroot RB Defft 1 Delft 1 Delft 2/3		OK OK Check Check Fail	49.42 49.95 55.85 61.84 60.78 51.73 53.6 56.06	None given		

Wetted surface estimate

Vessel details

We often place boats into the general categories of *displacement*, *semi-displacement* or *planing*. While they may be useful to help us describe the nature of the design, they are not good hydrodynamic distinctions.

How do you describe a hard-chine boat that is running at low speed? Is it still a planing hull or is it operating in a semi-displacement mode? What about a displacement hull that is over-powered and runs beyond its "hull speed"? Since we might be seeing operation across speed regimes, we must describe the boat as fully as possible. The definition of the boat should include all of the characteristics that might contribute to a boat's drag across its entire speed range, such as LCB, transom immersion, deadrise, and shaft angle.

Home Project Ves	sel Added drag Propul	sion Calculate			? Help
	Enter displace	ment/semi-dis	placement data		
	Enter data specific to o Click Next to continue		lisplacement hull forms. data page.	Back	Next
Vessel pages	Displacement/semi-	displacement			
General parameters	Max section area	2.42 m2	Transom area	1.71	m2
Displacement/semi Planing data	Waterplane area	52.88 ≅ m2	Transom beam	4.26	m
Prediction method	Static trim by stern	0 m	Transom draft	0.56	m
Related tasks	LCB aft FP	7.5762 m	Half ent angle	36.9	≅deg
Show coefficients	Bulb ext fwd FP	0 m	Bow shape	Average	•
	Bulb area at FP	0 m2	Stern shape	Average	•
Common tasks Define project units	Bulb ctr abv BL	0 m2			
Denne project units	Hints				
	Click the 'Show coeffi non-dimensional coef		ited tasks) to display cert	ain values as	

Displacement and semi-displacement data page

Home Project Vess	el Added drag Propu	sion Calculate				? Help
	Enter data for	planing-l	null ana	alysis		
	Enter any data that w Click Next to choose a	ill be needed fo a resistance pre	or planing v ediction met	essel drag analysis. thod.	dann Back	Next
Vessel pages	Planing					
General parameters	Proj chine length	14.5	m	Deadrise midchine	21.7	deg
Displacement/semi Planing data	Max chine beam	4.6	m	LCG fwd transom	6.46	m
Prediction method	Proj bottom area	56	m2	VCG above BL	1.23	m
	Thrust line					
	Shaft angle to BL	14	deg	LCE fwd transom	1.12	m
	VCE above BL	0.37	m			
Common tasks						
Define project units	Flap/wedge					
	Number of flaps	0		Flap deflection	0	deg
	Flap chord length	0	m	Flap location	Under	¥
	Flap span	0	m			

Planing data page

Resistance prediction method

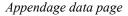
As we know, perhaps the most significant contributor to good prediction reliability is the appropriate selection of the prediction method. The selected prediction method should be built from hulls that share the same basic character as the vessel under review. You cannot rely on results from a method derived from a fundamentally different hull type. Referring to drawings of the method's hull forms is the first step to selecting a suitable method.

After principal hull type, the method's range of data set parameters must be considered. The most critical parameter to watch is speed (typically Froude number), then the hull form parameters. The obvious way to avoid difficulty is to evaluate many different methods and to select one that offers a good correlation between your boat and the method.

Home Project Ves		eulsion (% Hel
	Choose a res Click on a prediction the Prediction optic	Method	selection	n from th	e list	below and e	Ve	Back	IIII) Home
/essel pages	Method	Speed	Hull	Details		Parameters	: Savitsky p	laning	
General parameters	VTT HC	ОК	OK	OK	-	Fn(Bch)	0.613	1.1	
Displacement/semi	Savitsky planing				H	Fn-high	0.613	1.8	
Planing data	DeGroot HC	OK	Check	OK	11	Clb-low	00.5	0.39	
Prediction method	Simple planing	OK	OK	OK	11	Clb-high	00.5	0.17	
	Series 62 planing	OK	Check	OK		Deadrise	030	21.7	
	Series 65B planing	OK	Check	OK					
common tasks	The OK/Check/Fail Notes: Widely use Prediction options	d.	5-G.10 (1)	ame		Capic Will He	, ou seleu		
Define project units	Design margin		0	%		Correlation	allowance	0.00056	2
						Planing hur	mp correction	Half	-
	The calculations u considered.	se an ec	quilibrium	-trim ana	alysis	s where all fo	proes and mo	ments are	

Resistance prediction method page

Added drag from appendages and wind


The prediction of vessel drag is not complete with just the bare-hull drag. Added appendage and wind drag can be a significant portion of the total drag – especially for planing craft. Appendages alone can contribute over 25% for fast craft. Poor estimates of added drag can greatly reduce prediction accuracy.

SwiftCraft - R/V Ocean I	nspector	<u>-0×</u>
Home Project Ves	sel Added drag Propulsion Calculate	% Help
	Select added drag prediction methods	
	writch ON or OFF the Appendage and Wind drag predictions, and select prediction Methods. Click Next if entering detailed appendage data, otherwise click Home to complete the added drag tasks.	Next
Added drag pages	Appendage	
 Prediction summary Rudder and skeq 	Appendage drag prediction is: ON 💌 Method: Hoerner (detailed)	•
Shaft and strut	If Appendage prediction is ON, enter the following parameters. If a Detailed analys method was selected, then additional appendage pages will follow.	sis
	Percentage vessel drag 0 % VCE above BL 0.366	m
	Prediction multiplier Standard LCE fwd transom 1.12	m
	Wind	
Common tasks	Wind drag prediction is: ON Method: Taylor (detailed)	-
Define project units	If Wind prediction is ON, enter the following data and parameters.	en e
	Percentage vessel drag 0 % Windage section area 17.86	m2
	Wind speed 5 kts VCE above BL 2.32	m
	Angle off bow 0 deg LCE fwd transom 9.61	m

Added drag prediction page

In addition to summary estimates of appendage and wind drag, you can also define and evaluate the collection of individual appendages as part of the *Added drag* group.

Home Project Ves	sel Added drag Propul	ο Σ _{ετ} ision Calculate		9 He
	Enter detailed	rudder and ske	eg data	
	Fill in the following Ru continue entering app	dder and Skeg informat endage data.	on. Click Next to	Back Next
dded drag pages	Rudder			
Prediction summary	Number of rudders	2	Span	0.73 m
Rudder and skeg Shaft and strut	Rudder location	Behind prop 💌	T/C ratio	0.08
	Root chord	0.55 m	Configuration	Balanced 💌
	Tip chord	0.305 m		
	Skeg			
	Number of skegs	1	Depth -fwd	0.045 m
ommon tasks	Mean length	8.53 m	Depth -mid	0.152 m
Define project units	Mean thickness	0.052 m	Depth -aft	0.488 m

Opportunities for drag reduction

During early stages of your design, you might be able to seek out ways to reduce the drag of your hull. For example, you might find that a change in transom immersion or a shift in LCG results in less drag.

Home Project Ves	el Added drag Propulsion Calculate		1 He
	Evaluate hull changes tha	at can reduce drag	
	Select two speeds and their weighted tir evaluate only one speed.) Click Evaluate		0% to Done
	Drag reduction profile		
	Prediction method Savitsky planing	g	
	Principal speed	kts Time at speed	80 • %
			1
	or and an and the second	the Town of succed	
	View analysis results in	kts Time at speed	
	View analysis results in		Index is for a
ommon tasks	View analysis results in Evaluate Weighted average of the	the table below. The Sensitivity e principal and secondary speed	Index is for a s.
	View analysis results in Evaluate View analysis results in Weighted average of the Parameter	the table below. The Sensitivity e principal and secondary speed To reduce drag	Index is for a s. Sensitivity inde:
ommon tasks Define project units	View analysis results in Evaluate Weighted average of the Parameter LCG fwd transom	the table below. The Sensitivity e principal and secondary speed To reduce drag Increase [+]	Index is for a S. Sensitivity index 1.70
	View analysis results in weighted average of the Parameter LCG fwd transom Deadrise midchine	the table below. The Sensitivity e principal and secondary speed To reduce drag Increase [+] Decrease [-]	Index is for a s. Sensitivity inde 1.70 0.30
	ump View analysis results in weighted average of the Parameter LCG fived transom Deadrise midchine Shaft angle to 8L Max chine beam Proj chine length	the table below. The Sensitivity e principal and secondary speed To reduce drag Increase [+] Decrease [-] Decrease [-] Not used	Index is for a Sensitivity inde 1.70 0.30 0.13
	Use View analysis results in Evaluate Weighted average of the Deadrise middhine Deadrise middhine Shaft angle to 8L Max chine beam Proj ohtno area Deadrise middhine	the table below. The Sensitivity e principal and secondary speed To reduce drag Increase [+] Decrease [-] Increase [-] Decrease [-] Not used Not used	Index is for a Sensitivity index 1.70 0.30 0.13 0.01
	ump View analysis results in weighted average of the Parameter LCG fived transom Deadrise midchine Shaft angle to 8L Max chine beam Proj chine length	the table below. The Sensitivity e principal and secondary speed To reduce drag Increase [+] Decrease [-] Decrease [-] Not used	Index is for a Sensitivity index 1.70 0.30 0.13 0.01

Drag reduction page

Propulsion analysis parameters

As was described in the introduction of this paper, a speed prediction is not complete without a systematic propulsion analysis. The definition of a suitable prediction method for wake fraction and thrust deduction is the first of the *Propulsion* tasks.

In the same way that the vessel drag prediction methods were ranked, so too are the methods for the prediction wake fraction and thrust deduction. Do not forget any characteristics that affect the coefficients, such as whether the propellers are in tunnels (pockets).

Home Project Ve	sel Added drag Prop	ulsion C	Σ <u>r</u>] Calculate						8 Help
	Set up propul	sion	analy	sis pa	ara	meters			
	Set the analysis ON of wake fraction, thru Enter additional data	ust dedu	iction an	d relative	e-rot	ative efficie	ncy.	Home	Next
Propulsion pages	Propulsion	and the second							Sec. 1
Analysis parameters Engine and sizing Gear and propeller	Propulsion analysis Number of propelle]		Max prop	eller diam	853	mm
	Method	Speed	Hull	Details		Parameter	s: Blount/H	ox planing	
	Simple planing Series 62 planing Blount/Fox planing	OK OK OK	OK Check OK	OK OK		Fv-low Fv-high Props	14 14 22	1.44 2.21 2	[
Common tasks	Holtrop 1984 Simple displ/semi	Check Fail	Check OK	OK OK			Line	-	
Define project units	The OK/Check/Fail r Notes: Twin screw						elp you sel	ect a method	
	Propulsive coef pro	ediction	options						
	Back cavitation limi	t 10%	cav line	-		Effective 1	unnel diam	0	m
	Tunnel stern corr	OFF				Tunnel de	inth	0	- m

Propulsion analysis methods page

Engine data

As described above, the engine can affect propeller sizing decisions – particularly when the design point for the sizing results in reduced pitch. You will need to describe information about the engine and power delivery, as well as the propeller sizing objectives.

Home Project Ve	ssel Added drag Propul	Σ <u>r</u> sion Calculate				💡 Helj
	Define an engi	ine and pr	opulsi	on sizing condi	tions	
	Enter data about your (Sizing data is not nee propeller.) Click Next t	eded if you alrea	ady have y	our gear and	Back	Next
Propulsion pages	Engine and power de	elivery				
Analysis parameters • Engine and sizing Gear and propeller	Engine model	Model ABC	- 🛋	Fuel rate at rated	119.2	l/hr
	Rated brake power	447	kW	Parasitic loss	0	kW
oodi dila p	Rated RPM	2100	RPM	Shaft efficiency	0.98	~
Related tasks	The values for Rated	brake power, F	uel rate at	t rated and Parasitic los	s are per en	gine.
Add to my engines	Sizing condition					
	Load identity	Power	7	Design speed	18	
Common tasks	Load design point	100	%			
Define project units	gear ratio: • Design power • Design RPM = Hints When you see th	r – Load design • Rated RPM he file directory	pt * (Rate	s for the selection of dia ad power - Parasitic loss lustrated here) next to cations for a particular f	s) a field, click it	t to open a

Engine and sizing conditions page

Reduction gear and propeller data

The reduction gear is defined by its ratio and gear efficiency. In advanced software, the reduction ratio will be integral to the propeller sizing process.

The definition of propeller performance conforms to the advice noted earlier – in that it allows for the correct basic propeller style (Gawn), as well as any needed correction for cup and cavitation. It also provides a means to correlate *theoretical* performance to what is *deliverable*.

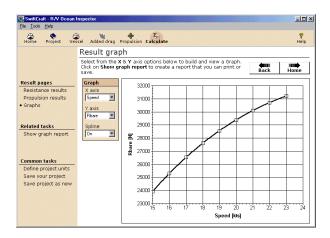
Thrust (T) and power (P) factors are correlation multipliers that we use to better match real *on-the-water* performance for the propellers. The factors

correct for small differences in performance that we might find with a commercial propeller.

A suitable propeller can be sized prior to a final analysis. The propeller BAR, diameter and pitch - as well as the reduction ratio - are found for the described design conditions.

Home Project Ves	sel Added drag Propu	ο Σ _{εί} Ision Calculate		9 Hel
	Set up your re	eduction gear a	and propeller	
	the instructions below	scribe your reduction g v for the sizing of diame a to complete the Propu	ear and propeller. Follow eter, pitch, BAR and/or Ilsion tasks.	Home
Propulsion pages	Gear			(destroyer)
Analysis parameters	Gear model	Model DEF 💕	Gear ratio Keep 💌 2.54	
Engine and sizing Gear and propeller	Gear efficiency	0.965		
	Propeller			
Related tasks	Propeller model	Model GHI 💕	BAR Size .0.9854	
Add to my gears Add to my propellers	Propeller series	Gawn AEW 💌	Diameter Size - 853	mm
	Number of blades	5 -	Pitch Size 1015.78	16 mm
ommon tasks	Thrust factor	1 =	Cup (TE drop)	mm
Define project units	Power factor	1.03 =	Immersion below WL 0.975	m
	Sizing		n click Size to calculate values for	

Reduction gear and propeller page


Analysis results

All data has been entered and intermediate calculations (such as propeller sizing) are completed. The only thing left is to *Calculate* the full resistance and propulsion results for your vessel.

Ele Iools <u>H</u> elp Home Project Ve		g Propulsion	Σ <u>y</u> Calculate				? Help
	Resistance	e results	;				
	Here are your results. Click of save or print	Home	Next				
Result pages	Speed [kts]	Fn	Fv	Trim [deg]	Stability	AvgPress [kPa]	Rbare/W
Resistance results	15.0	0.658	1.439	3.61	Stable	3.27	0.0968
Propulsion results	16.0	0.702	1.535	3.76	Stable	3.36	0.1024
Graphs	17.0	0.746	1.631	3.92	Stable	3.46	0.1073
	18.0	0.789	1.727	4.06	Stable	3.57	0.1117
	19.0	0.833	1.823	4.20	Stable	3.68	0.1156
Related tasks	20.0	0.877	1.919	4.32	Stable	3.80	0.1189
Show results report	21.0	0.921	2.014	4.42	Stable	3.91	0.1218
Drag reduction	22.0	0.965	2.110	4.50	Stable	4.02	0.1242
biagreaddon	23.0	1.009	2.206	4.54	Stable	4.13	0.1263
Common tasks	Speed [kts]	Rbare [N]	Rapp [N] [%]	Rwind [N] [%]	Rmargin [N] [%]	Rtotal [N]	PEtotal [kW]
Define project units	15.0	23918	737 [3]	1231 [5]	0[0]	25886	200
Save your project	16.0	25303	830 [3]	1370 [5]	0 [0]	27503	226
Save project as new	17.0	26523	929 [4]	1516 [6]	0 [0]	28968	253
save project as new	18.0	27606	1033 [4]	1670 [6]	0 [0]	30309	281
	19.0	28559	1142 [4]	1831 [6]	0 [0]	31531	308
	20.0	29384	1255 [4]	1999 [7]	0 [0]	32638	336
	21.0	30098	1374 [5]	2175 [7]	0[0]	33647	364
	22.0	30699	1498 [5]	2359 [8]	0 [0]	34556	391
	23.0	31211	1627 [5]	2549 [8]	0[0]	35388	419

Tabular resistance results page

It is always useful to review the results in graphical form. This is the easiest way to check that the curve *shape* is reasonable. Does the shape of the drag curve correspond to what is expected as the boat approaches its principal drag hump? Do the drag coefficients follow a smooth curve, and if not, does this suggest potential error in the equations?

Graphical resistance results page

The propulsion analysis follows the equilibrium RPM thrust-drag solution at each speed. The results include various propulsion analysis figures – wake fraction and thrust deduction, RPM, thrust, torque, power, efficiency, cavitation, and even fuel rate.

Home Project Ves		ag Propulsio	n Calculate					% Help
	Propulsi Here are yo results. To s	Back	Next					
Result pages	Speed [kts]	WakeFr	ThrDed	RelRot	EngRPM	T/Prop [N]	EngTorque [N-m]	PB/Prop
Resistance results	15.0	-0.0426	0.0800	1.0000	1634.1	14067	1058	181.0
Propulsion results	16.0	-0.0336	0.0800	1.0000	1707.4	14946	1129	201.8
Graphs	17.0	-0.0244	0.0800	1.0000	1776.8	15742	1194	222.1
	18.0	-0.0152	0.0800	1.0000	1843.3	16474	1255	242.2
	19.0	-0.0064	0.0800	1.0000	1907.3	17138	1312	262.0
Related tasks	20.0	0.0018	0.0800	1.0000	1969.2	17737	1364	281.4
Show results report Propeller strength	21.0	0.0091	0.0800	1.0000	2030.1	18288	1414	300.7
	22.0	0.0156	0.0800	1.0000	2090.0	18784	1461	319.8
	23.0	0.0210	0.0800	1.0000	2149.5	19231	1505	338.7
Common tasks	Speed [kts]	PropEff	OPC	Fuel/Eng [l/hr]	TipSpeed [m/s]	Cav [%]	BldPress [kPa]	MinBAR
Define project units	15.0	0.6611	0.5717	48.3	28.7	2.1	25.0	0.5089
Save your project	16.0	0.6664	0.5813	53.8	30.0	2.2	26.5	0.5358
Save project as new	17.0	0.6714	0.5909	59.2	31.2	2.3	28.0	0.5597
save project as new	18.0	0.6761	0.6004	64.6	32.4	2.4	29.3	0.5812
	19.0	0.6805	0.6096	69.9	33.5	2.5	30.4	0.6002
	20.0	0.6846	0.6184	75.0	34.6	2.6	31.5	0.6169
	21.0	0.6885	0.6265	80.2	35.7	2.8	32.5	0.6318
	22.0	0.6921	0.6339	85.3	36.7	2.9	33.4	0.6447
	23.0	0.6954	0.6404	90.3	37.8	3.1	34.2	0.6559

Tabular propulsion analysis page

Summary

This example has illustrated a number of important features that are necessary for a reliable propulsion analysis and speed prediction. Below is a list of "ten commandments of reliable speed prediction" [MacPherson 1996] that will provide a solid basis for anyone conducting speed-power predictions and propulsion analyses:

1. Use representations of real physical systems

Do not use simplistic calculations, such as a single OPC for all boats.

2. Use contemporary techniques

Follow the current calculation recommendations of the international hydrodynamic societies. For example, be sure to use recommended propeller scale correction and model expansion methodologies.

3. Use the right kind of prediction method

Some prediction methods are strong for design, others for analysis. Learn how the method's test data was developed into the numerical method.

4. Use a method that contains a suitable data set

Know what hulls were used to develop the methods you wish to use. Consider the speed range and hull parameters.

5. Correlate predictions to real test data

Compare your predictions to boat tests. In fact, we recommend instituting a rigorous sea trial program to analyze boat tests and compare them to predictions [MacPherson 1995, MacPherson 2003].

6. Remember all speed prediction components

Speed prediction is more than just bare-hull resistance. Don't forget appendage and wind drag, and the propulsion analysis.

7. Use a proper propulsor model

Make sure that the propeller definition uses the correct basic propeller style (e.g., Gawn), as well as any needed correction for cup and cavitation.

8. Test the results against established criteria

Compare your prediction against other predictions using non-dimensional measures, such as transport efficiency. View results graphically across a range of speeds to see that the curve shapes are sensible.

9. Use validated methods, algorithms and techniques

Simply plugging data through an equation is no guarantee of success. Publication and coding errors are all too common – especially with in-house software. Be careful to validate the code, not only with data from the original method hull forms, but with other hulls.

10. Follow a consistent prediction strategy

Remember your objective – to get reliable answers. If you have experience with a particular method that gives you a *consistent trend*, you are better off than with a method that is perfect sometimes and poor at others. Establish a process and then stick with it.

REFERENCES

- MacPherson, D.M., "Reliable Propeller Selection for Work Boats and Pleasure Craft: Techniques Using a Personal Computer", SNAME Power Boat Symposium, 4th, 1991
- MacPherson, D.M., "Reliable Performance Prediction: Techniques Using a Personal Computer", SNAME *Marine Technology*, Oct 1993
- MacPherson, D.M., "Analyzing and Troubleshooting Poor Vessel Performance", 11th Fast Ferry International Conference, Hong Kong, Feb 1995
- MacPherson, D.M., "Ten Commandments of Reliable Speed Prediction", SNAME *Small Craft Symposium*, Univ. of Michigan, May 1996
- MacPherson, D.M., "Small Propeller Cup: A Proposed Geometry Standard and a New Performance Model", SNAME *Propeller Symposium*, 1997
- MacPherson, D.M., "A Universal Parametric Model for Waterjet Performance", *Proceedings* FAST '99, Seattle, 1999
- MacPherson, D.M., "Selection of Commercial Waterjets: New Performance Coefficients Point the Way", SNAME *New England Section*, Feb 2000
- MacPherson, D.M., "Special Performance Considerations for Boats with Electronic Control Engines", International Boatbuilders' Exhibition & Conference (IBEX), 2001
- MacPherson, D.M., "Case Study: Application of NavCad to the Design and Optimization of a Waterjet-Driven Patrol Boat", HydroComp Report, Nov 2002
- MacPherson, D.M., "Sea Trial Analysis: The Value in the Data", *International Boatbuilders' Exhibition* & Conference (IBEX), 2003

CONTACT

Donald M. MacPherson VP Technical Director HydroComp, Inc. 13 Jenkins Court, Suite 200 Durham, NH 03824 USA Tel (603)868-3344 Fax (603)868-3366 dm@hydrocompinc.com www.hydrocompinc.com