HYDROCOMP

# Electric motors for propulsion: Impact on vessel performance and propeller selection

Copyright © 2022 HydroComp, Inc. All rights reserved.

Alex Walker, Naval Architect, HydroComp, Inc. Donald MacPherson, Technical Director, HydroComp, Inc.

Electric & Hybrid Marine Conference N.A. – 2 November 2022

#### VESSEL-PROPULSOR-DRIVE: ELECTRIC DRIVE MOTOR



- Speak in terms of power, and not torque
  - Better relates transfer of energy
  - It is independent of RPM
- Power is common among all system components
  - Vessel: Resistance → Effective power (P<sub>E</sub>)
  - Propulsor: Thrust/Torque  $\rightarrow$  Developed power (P<sub>D</sub>)
  - Drive: Torque  $\rightarrow$  Brake power (P<sub>B</sub>)



#### ELECTRIC MOTOR POWER DESCRIPTION

- "Rating" point: mechanical power & RPM
- Typical power curve forms

Electrical data

AC/DC PM ("const Q", "const Q/P" FW); AC Ind (NEMA)

| U                |     | f    | Р                                                | Р    | n     | I Load [Amps] |       |         |                    | Nom. Eff Load [%]                      |                                       |      | Pwr. Factor Load [%] |      |              | Torque | $T_A/T_N$  | T <sub>k</sub> /T <sub>N</sub> |         |
|------------------|-----|------|--------------------------------------------------|------|-------|---------------|-------|---------|--------------------|----------------------------------------|---------------------------------------|------|----------------------|------|--------------|--------|------------|--------------------------------|---------|
| [V]              | Δ/Υ | [Hz] | [HD]                                             | [KW] | [mon] | 4/4           | 3/4   | 1/2     | 0                  | LRC                                    | 4/4                                   | 3/4  | 2/4                  | 4/4  | 3/4          | 2/4    | [lb-ft]    | LRT [%]                        | BDT [%] |
| 460              |     | 60   | 75.00                                            | - -  | 1,780 | 35.00         | 64.70 | 47.10   | 25.00              | 543.0                                  | 95.4                                  | 95.8 | 95.6                 | 87.0 | 85.0         | 78.0   | 221.0      | 180                            | 240     |
| 230              |     | 60   | 75.00                                            | - -  | 1,700 | 170.00        |       |         |                    |                                        | 95.4                                  | 95.8 | 95.6                 | 87.0 | <b>85.0</b>  | 78.0   | 221.0      | 180                            | 240     |
|                  |     |      |                                                  |      |       |               |       |         |                    |                                        |                                       |      |                      |      |              |        |            |                                |         |
| Frame Type: 365T |     |      | Type of constr.: ( A ) Foot mounted - End shield |      |       |               |       |         | Ins. Cl.:lı<br>cla | nsulation<br>ss F                      | Motor Prot.:(A) No winding protection |      |                      |      | NEMA Des.: B |        | S.F.: 1.15 |                                |         |
| Mtr. WT:947      |     |      |                                                  |      |       |               |       | Temp. R | lise Cl.: B        | Amb. Temp.: + to -20 °C @1000 m kVA: 0 |                                       |      |                      | A: G | I.P.: IP65   |        |            |                                |         |

#### Class I Division 1 Groups D

#### TORQUE & POWER CURVES: IC ENGINE

Typical marine diesel

HYDROC

- A. Full <u>power</u> to lower RPM (contemporary diesels)
- B. Low RPM power curve follows typical prop demand curve
- C. Peak torque below rated RPM



#### TORQUE & POWER CURVES: AC/DC PM MOTOR

### "Constant Torque"

- A. Full <u>torque</u> to lower RPM, not power; max power is tucked into a peak
- B. Still generous power at low RPM vs diesel
- C. "No-load" RPM can vary greatly (+10% to +100%)



- "Const Torque / Const Power"
  - A. Full <u>power</u> to <u>higher</u> RPM (via magnetic field weakening or phase advance); broad RPM range of max power
  - B. Abundant power at low RPM (with proper sizing strategy!)
  - C. Upper RPM can vary greatly



#### TORQUE & POWER CURVES: AC IND MOTOR

### NEMA A/B

HYDROC

- A. Very high peak torque/power at 90% to 95% rated RPM ("breakdown torque")
- B. Generous power at low RPM (minimum "pull-up" power equal or greater than rated)
- C. Steep decline to no-load RPM



#### PROPULSOR LOAD ON A DRIVE

- Critical to determine first
- Power vs RPM
- Relevant curves
  - Rated power ("cubic")
  - Predicted calm-water curve
  - With design margin

HYDROCOMP

With added load (seas, etc)



#### HOW DRIVE CURVE SHAPE AFFECTS PERFORMANCE

- Power curve key to handling steady and dynamic loads
  - A. Steady loads (seas, towing): shape matters most with FPPs
  - B. Dynamic loads (planing hump): shape at low RPM
  - C. WJ & CPP propulsors tend to follow steady-state curve

HYDROC



#### FPP SIZING STRATEGY: AC/DC PM "CONST Q"

HYDROCOMP

#### Propulsor design point: Power -10%; RPM +10%



#### FPP SIZING STRATEGY: AC/DC PM "CONST Q/P"

HYDROCOMP

#### Propulsor design point: Power rated; RPM +15%



#### FPP SIZING STRATEGY: AC IND "NEMA A/B"

HYDROCOMP

### Propulsor design point: Power rated; RPM rated



#### CASE STUDY: 9M PLANING CRAFT

#### NavCad's "Generic" simple definition models



#### CASE STUDY: 9M PLANING CRAFT

### Design objectives

- 25+ kt speed (incl added loads)
- Only "Const Q" motor available; but with generous no-load RPM

## Sizing solution

HYDROX

- Motor with +10% power margin
- Optimize gear ratio & pitch for operational RPM at +20% "rated"



#### CASE STUDY: 9M PLANING CRAFT

- Current demand (amps="fuel")
  - Partial load eff'y (incl control loss)
  - Roughly 3%-4% loss at 50% power

Electrical input Current draw:

Motor eff'y:

Controller eff'y:

Estimated

0.95

0.95

| WER      | 0.93 0.94           |
|----------|---------------------|
| SHAFT PO | 0.91 0.92           |
|          | 0.90<br>0.75<br>RPM |

| S             | SPEED COEFS | S     | Р            | RIME MOVE     | R                  | ELEC DEMAND PER MOTOR |                |        |  |  |
|---------------|-------------|-------|--------------|---------------|--------------------|-----------------------|----------------|--------|--|--|
| SPEED<br>[kt] | FV          | FNB   | RPM<br>[RPM] | PMECH<br>[kW] | LOADPCT<br>[% max] | PELEC<br>[kW]         | CURRENT<br>[A] | EFFMTR |  |  |
| 18.00         | 2.473       | 2.126 | 1914         | 41.7          | 53.8               | 46.7                  | 116.8          | 0.891  |  |  |
| 20.00         | 2.748       | 2.363 | 2041         | 47.4          | 61.2               | 53.1                  | 132.7          | 0.893  |  |  |
| 22.00         | 3.022       | 2.599 | 2175         | 54.2          | 69.9               | 60.5                  | 151.4          | 0.895  |  |  |
| 24.00         | 3.297       | 2.835 | 2315         | 62.3          | 80.4               | 69.4                  | 173.6          | 0.897  |  |  |
| 26.00         | 3.572       | 3.071 | 2461         | 71.9          | 92.8               | 80.0                  | 199.9          | 0.900  |  |  |
| 28.00         | 3.847       | 3.308 | 2612         | 83.3          | 107.6              | 92.6                  | 231.5          | 0.900  |  |  |

- For successful electric drive motor selection
  - Assess operation profile (environmental, towing tasks, ...)
  - Calculate and lay out RPM-Power demand curves
  - Fit motor <u>power</u> curve to enclose demand curves

### Thank you!

- alex.walker@hydrocompinc.com
- donald.macpherson@hydrocompinc.com
- www.hydrocompinc.com