

Improving Effectiveness of CFD Self-propulsion Analysis With a Proxy Propeller and Engine Constraints

Donald MacPherson, HydroComp, Inc., Durham NH **Rory Macdonald**, Lengkeek Vessel Engineering, Halifax NS

Mari-Tech 2018, Victoria BC

INTRODUCTION

CCGS Navaids tenders maneuvering study

CCG PURPOSE FOR THE PROJECT

- Improve Eckaloo maneuverability
- Upgrade propulsion systems on both
- Stern tunnel modifications
- Common components
 - Engine, gearbox, rudder, propeller
 - Reduce spares; simplify procurement

CRITERIA AND LIMITATIONS

- Speed
 - In various conditions and water depth
- Maneuvers
 - Reverse course, crash stop, full turn
- Equipment
 - Rudder stern mounted
 - New package within existing space

PROJECT TEAM

- Lengkeek Vessel Engineering
 - Prime contractor
- Lloyd's Register Applied Technology Group
 - CFD sub-contractor
- HydroComp, Inc.
 - Propeller design, propulsion system analysis

COMPUTATIONAL MODELING

- Variables for "design of experiments"
 - Stern, rudder, engine models
 - Corresponding optimized propeller
- Identify and predict performance
 - Existing and proposed
 - Framework:

APPLICATION OF CFD FOR SIMULATION

- Creation of geometric models
- Hull, shafting, appendages
- Propeller performance
 - Key to flow over rudders and maneuvering

APPLICATION OF CFD FOR SIMULATION

- Full propeller geometry needed
 - Conditions exist with exposed tip in tunnel
 - Simplified actuator disk insufficient
- Engine/drive "uncoupled" from hull/prop
 - Yet the engine influences maneuvering!

AN ENGINE'S CONTRIBUTION

- Maneuvering: multiple high-thrust bursts
 - Prop power demand at RPM constrained by engine curve
 - Example of WOT during maneuvering
 - So how do we consider the engine's influence?

VIRTUAL COUPLING AS ENGINE CONSTRAINT

- Set limits in CFD on propeller RPM, thrust
- Calculated in NavCad for each variant prop
- A lot of propellers!
 - Or is it?

A "PROXY" RE-USABLE PROPELLER

- True simulation needs a unique optimized propeller for each variant in the study
 - Each propeller calculation took about 8 hours
- Idea! Replace each propeller with a single "proxy"
 - Greatly reduces time for model creation validation, and a bit for computation

PROCEDURE

- Steps to develop "proxy" limits for CFD
 - 1. Hull-propulsor condition for stern variants
 - 2. Size optimum prop for each engine variant
 - Run propulsion simulation to find towpull for optimum propeller (at multiple speeds)
 - 4. Replace with "proxy" propeller
 - 5. Find RPM that delivers equivalent thrust at speed
 - 6. Use as limits for CFD

APPLICATION OF THRUST CONSTRAINTS

- Maneuvering is an iterative calculation
 - Start at rest; RPM ramped up; thrust allows acceleration
 - Convergence is reached at thrust equilibrium
 - Is Thrust-RPM-Speed within constraints?
 - Modify as needed and re-iterate
- Works for any system with Hull-Propulsor in CFD and Drive-Engine uncoupled

POTENTIAL SAVINGS

- Principal savings is in 3D model creation and validation
 - Up to 80% CFD project cost [Bertram 2010]
 - Dozens of 3D propeller models down to one!
- Supplemental savings in calculation time
 - Better starting conditions

WHAT WAS THE OUTCOME?

- Dozens of stern-rudder-engine variants
 - Two variants successfully met all criteria
- Now in hands of the CCG
- And the "proxy" propeller?
 - Cost and time savings;Improved outcomes
 - Now living a quiet life on a hard drive somewhere...

THANKS! QUESTIONS?

REFERENCES

- HydroComp, Inc.
 - donald.macpherson@hydrocompinc.com
 - www.hydrocompinc.com

- Lengkeek Vessel Engineering
 - rory@lengkeek.ca
 - www.lengkeek.ca

